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BLUF

» Climate science is complex and data-
Intensive

» Climate preparedness and resilience actions
require translation of science to actionable
iInformation for decision-makers

= Science translation for changing sea levels Is
fairly mature

= Science translation for hydrologic impacts is
dependent on evolving science and is making
progress




Coastal Climate Change Impacts

" grt(r)?en& eeallii?\ecrr]ggsgisiir? for = Compute local relative sea
coastal flooding due to level change from gl_obal
changing sea levels (eustatic) sea level rise

— Scenario approach can be accounting for regional and
used to address future local vertical land movement

uncertainty _ _

_ Reasonable agreementto " FOr tide gauges with >40
2100 years of record this is

— Can take action now relatively straightforward

= Less evidence for projected . Tgols

changes in tropical and
extra-tropical events — USACE Sea Level Calculator

— Wait for science to evolve — NOAA Sea Level Rise Viewer




Tools: Coastal Climate Change
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= Sea level change calculator
— Supports repeatable results
— Relies on NOAA tide gauge data

— Includes some long-term non-NOAA
tide gauges in the Louisiana Gulf
Coast area

— Publicly available

— Part of Interagency Sandy Sea
Level Rise tool
— Supports comparisons to
= NOAA 2012 scenarios

= New York City Panel on Climate
Change

= NRC 2012 Pacific Coast
— Includes extreme water levels

= Reference: ER 1100-2-8162
and ETL 1100-2-1
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http://www.corpsclimate.us/ccaceslcurves.cfm
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Progress: Hydrologic Nonstationarity

From this....... To this......

Nonstationarity Detector

Nonstationarities Detected using Maximum Annual Flow Site Selection
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Tools: Detection of Hydrologic Nonstationarity

Monstationarity Detector

30K

Detected
nonstationarity

Cramer-von-Mizes (CPM)
Kolmogorov-Smirmow (GPR)
LePags (CPM)

Energy Di e Method
Lombard VWilcoxon
Pettitt

Mann-Whitney (CPM)
Bayesian

Lombard Mood

Mood (CPI)

Smooth Lombard Wilcoxon
Smooth Lombard Mood

M Cistribution

I e

Segment Mean
(CF3)

Segment Standard Deviation gy
(CFS) oK
Segment Variance SOn
[CFS Squared) ona

Monstationarities Detected using Maximum Annual Flow Site Selection
Select a HUC-4 watershed

0902-Red

Select a site
RED RI'VER OF THE NORTH AT FAR...
Timeframe Selection

1901 2014

Sensitivity Parameters

Larger Walues will Result in
Fewer Nonstationarities Detected

Number of Observations
Before A Nonstationarity
is Detected by CPM Methods

1940 1850 1960 20

Water Year

1870 1980 1890 2000 2010 2020

L

I CPM Methods Sensitiviy
1.000

Change in mean

qo=p

1900 1810 1920

Smaller Walues will Result in
More Monstationarities Detecied

end - Type of Statistically Significant Change being Detected
“Wariance Smooth

Lombard Sensitivity

Mean and Variance Between All Nonstationarities Detected )

Pettitt Sensitivity

-

We acknowledge the U.S. Army Corps of
Engineers' Institute for Water Resources for
making the tool for the stationarity analysis
freely available at http:./corpsclimate. us/

1900

1910 1920 1930 1940 1950 1960 1970 1930 1990

2000

2010 2020

Water Year




Projected Climate Hydrology

Flow in CFS for HUC 108; GCM derived flow data = colored lines, Black line = Observed flow for Connecticut River at Thompsonville, CT Pathways
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Range of 93 Climate-Changed Hydrology Models of HUC 0108-Connecticut

From this.....

To this.....




Projected Climate Hydrology

Range of 93 Climate-Changed Hydralogy Models of HUC 0108-Connecticut

And from this..... —

Exceedance Curve (Colors indicate climate mode! name)
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Status Check
EE————

= Do we have all the answers?
— No

= Are we getting there?

— Yes, we have coastal and are moving toward climate
hydrology approaches that are supported by
actionable science developed in collaboration with our
partners and stakeholders, AND will not require major

adjustments
— Next steps: heat waves and supply chain
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