Regional Importance of Tennessee and Cumberland Basin Reservoir Systems

William M. Wilson, P.E.

Deputy District Engineer for Project Management Nashville District Corps of Engineers 12 August 2015

US Army Corps of Engineers BUILDING STRONG®

Purpose and Goal

- The purpose of this Nashville District Water Management Brief is to inform you about:
 - Competing demands for water
 - Ability to moderate flows
 - Response to extreme events
- Goal provide you with an understanding of how flows within the Tennessee and Cumberland Basins can be moderated to support water management objectives within their respective basins and also along the lower Ohio and Mississippi Rivers.

Authorizing Legislation

- Flood Control Act of 1938: PL 75-761
 - Wolf Creek (1952)
 - Dale Hollow (1953)
 - Center Hill (1951)
 - J. Percy Priest (1970)
 - Three Islands (Harpeth)
 - Rossview (Red)
 - Devil's Jump (Big South Fork Cumberland)

River and Harbor Act of 1946: PL 79-525

- Celina (Cumberland above Cordell Hull)
- Cordell Hull (1974)
- Old Hickory (1957)
- Cheatham (1959)
- Barkley (1966)
- Flood Control Act of 1960: PL 86-645
 - Laurel (1977)
- Flood Control Act of 1965: PL 89-298
 - Martins Fork (1978)

Congressionally Authorized Project Purposes

Project	Flood Control	Commercial Navigation	Hydropower	Recreation	Water Quality
Martins Fork Dam					
Laurel Dam					
Wolf Creek Dam					
Dale Hollow Dam					
Center Hill Dam					
J. Percy Priest Dam					
Cordell Hull Lock & Dam					
Old Hickory Lock & Dam					
Cheatham Lock & Dam					
Barkley Lock & Dam					
Project not designed for this purpose					In
Project designed for this purpose		4		BUIL	

TVA Reservoir Operating Guides

U.S.ARM

Tributary

BUILDING STRONG_®

Water Management Team

- Nashville District Water Management
 - Multidisciplinary staff engineers & scientists
 - Perform complete system analysis every day
- Nashville District Hydropower Operators
 - 24/7 operational support
- Great Lakes & Ohio River Water Management
 - Ohio/Mississippi flood control operations
 - Program oversight
- Federal Partners
 - Tennessee Valley Authority (TVA)
 - National Weather Service
 - U. S. Geological Survey

Tennessee and Cumberland Reservoir Systems

- Ability to Moderate Flows on the Ohio and Mississippi
 - Store water during high flow events
 - Kentucky and Barkley flood control storage
 - Winter Pool (354) 5,480,000 acre-ft (top of gates 375)
 - Summer Pool (359) 4,502,000 acre-ft (top of gates 375)
 - Summer Pool (359) 1,431,000 acre-ft (flood easement 365)
 - Upstream storage projects in both reservoir systems are operated to conserve flood control storage in Barkley and Kentucky
 - Augment Flows during low flow events
 - Upstream storage projects are operated to supplement main river flows during the dry time of the year
 - Fill tributary projects by end of May
 - Release stored during the summer and fall to meet downstream objectives – navigation, hydropower, water supply, water quality, recreation, etc.
 - Kentucky and Barkley winter drawdown (starts 1 July) coincides with low flow season

Historic Flood 1937

Cumberland River, mile 27.7, Eddyville gage 44.2; 2-20-37. This cow was caught in the forks of a tree on the left bank and left hanging 20' above water.¹² 13392

Water Stored During May 2010 Flood

Project	Headwater (0600 - 1 May)	Headwater Crest	Water Stored (acre-feet)
Wolf Creek ¹	682.94	703.86	867,000
Dale Hollow	650.16	657.34	204,000
Center Hill ¹	630.44	646.76	279,000
J. Percy Priest	489.36	504.90	278,000
Total			1,628,000 ²

Cordell Hull

Top of Lock Gate: 508.50 Peak Lake Elevation: 508.33

Cheatham Headwater Elevation

Record Setting Flood Event

Project	Lake Elevation (ft)		Project Discharge (cfs)		
	May 2010	Previous Record	May 2010	Previous Record	
Cordell Hull Lock & Dam	508.33	508.00 (May 1984)	130,100	123,850 (March 1975)	
Old Hickory Lock & Dam	451.45	450.17 (May 1984)	212,260	165,500 (March 1975)	
Cheatham Lock & Dam	404.15	398.95 (March 1962)	240,000	203,670 (March 1962)	
Barkley Lock & Dam	369.00	370.04 (May 1984)	303,200	241,980 (May 1983)	

U.S.ARM

Post Flood Investigations Supplemental Appropriations Act of 2010

6 Post Flood Investigations

- Post Flood Documentation Report
- Update of Flood Profiles
- Flood Warning & Emergency Evacuation Planning
- Emergency Action Plans
- Cumberland River Recon Study
- Harpeth River Recon Study

Post Flood Investigations Supplemental Appropriations Act of 2010

Post Flood Documentation Report

- Collect high water marks
- Gather and evaluate detailed damage data
- Develop rainfall summary/curves
- Construct flood profiles on the Cumberland & 25 tributaries
- Gage/stage discharge summary for Cumberland & tributaries
- GIS inundation layers
- Develop flood damage modeling, flood impact assessments, on the Cumberland & 25 tributaries

Community Mapping Efforts Post May 2010

BUILDING STRONG®

U.S.ARM

Cumberland River Mapping Efforts Post May 2010

24

Metro Nashville Flood Preparedness

 Began in August 2010 with many agencies working together to develop products & applications to provide Metro officials with timely information.

Corps of Engineers' Participation

- Update hydrology & hydraulic modeling
- Transfer Models to FEMA for county-wide FIS Update
- Inundation Mapping for 11 scenarios used as inputs for the Nashville Situational Awareness of Flood Events (SAFE) program
- Real Time Simulation Modeling

2011 MR&T Flood Event

Water Stored After February 24, 2011

Project	Headwater (02/24/2011)	Headwater Crest	Water Stored (acre-feet)
Wolf Creek ¹	681.12	725.96	1,992,000
Dale Hollow	643.75	660.16	459,000
Center Hill ¹	625.70	658.15	576,000
J. Percy Priest	483.75	501.65	280,000
Total			3,307,000 ²

¹ Wolf Creek and Center Hill Dams had been classified as DSAC 1 dams and were under pool restrictions to assure the stability of the dams.

² This volume of water is roughly equivalent to 1.08 quadrillion gallons of water or if stacked on a football field it would be 2.5 million feet (474 miles) high.

2012 Regional Drought

Mississippi River Navigation

Mississippi River at Memphis

- Historic Low Levels
 - 1) -10.70 (7/10/1988)
 - 2) -9.86 (9/19/2012)
 - 3) **-9.20 (9/20/2000)**
 - 19 September 2012
 - ► Flow of 146,000 cfs
 - Tennessee and Cumberland provided 53,000 cfs (36%)
 - ► Stage at 93,000 cfs ~-15.4

Recent Water Management Initiatives

Education Series

LRN Web-site

- Water Management Center
- Update Modeling Tools
- Spillway Gate Monitoring Systems
- RiverStatus Mobile Web-site
- Educational Videos

Questions?

Nashville District Homepage

www.lrn.usace.army.mil