USACE Inland Navigation Economics Cost-Benefit Analysis 101

Mark R Hammond Economist, Co-Technical Director PCXIN Great Lakes and Ohio River Division (LRD) 02 December 2015

US Army Corps of Engineers BUILDING STRONG®

Cost-Benefit Analysis

- Why is it Used?
 - Required for analysis of navigation projects by Flood Control Act of 1939.
 - Accounts for time value of benefits and of costs (50 year).
- What is it?
 - Technique to evaluate in monetary terms what is achieved (benefits) in comparison to what is invested (costs).
 - Systematic process for comparing costs and benefits over time between no investment (Without-Project Condition) and investment (With-Project Condition).
- What are the Metrics?
 - Net Benefits = Benefits minus Costs

Benefits Cost Ratio (BCR) = Benefits divided by Costs

Costs

- Without-Project Condition
 - Normal operation & maintenance costs
 - Cyclical maintenance & unexpected repair / replacement costs
 - ► Non-structural (i.e. helper-boats, mooring cells)
- With-Project Condition
 - Normal operation & maintenance costs
 - Cyclical maintenance & unexpected repair / replacement costs
 - Construction/Major Rehabilitation costs

Benefits

- Without Project Condition
 - National Economic Development (NED) benefits
 - Regional Economic Development (RED) benefits
 - Other Social Effects (OSE) benefits
 - Environmental Quality (EQ) benefits
- With Project Condition
 - NED benefits e.g. Transportation Rate Savings
 - RED benefits e.g. Jobs, Income
 - OSE benefits e.g. Cultural considerations
 - ► EQ benefits e.g. Environmental impacts

BUILDING STRONG

Cost Benefit – Incremental Analysis

	WITHOUT PROJECT	WITH PROJECT CONDITION				
METRIC	CONDITION	Alt A	Alt B	Alt C		
Costs	\$50,000	\$175,000	\$550,000	\$550,000		
Benefits	\$3,000,000	\$3,500,000	\$3,750,000	\$4,000,000		
Incremental Costs		\$125,000	\$500,000	\$500,000		
Incremental Benefits		\$500,000	\$750,000	\$1,000,000		
Incremental Net Benefits		\$375,000	\$250,000	\$500,000		
BCR		4.0	1.5	2.0		

NED plan maximizes net benefits – Alternative C is NED plan.

5

With-Project Costs - NED

- Investment First Cost (Construction Costs)
 - Walla Walla certified estimate (risk-based contingency)
- Interest During Construction (Construction Duration)
- Maintenance Costs (Scheduled)
- Costs from Risk Exposure (Repair & Replacement Costs)

With-Project Benefits – NED

- Inland Navigation Transportation
 - ► Cost Reduction → Project transit time reduction (Processing + Queuing Delay)
 - Others (Shift-in-mode, shift-in-market)
- Without-Project Repair & Replacement Costs Avoided
- Other Benefits*
 - Recreation
 - Water supply
 - Hydropower
 - Highway Impacts (\$)

Other benefits are only considered when selecting between projects if (NED) BCR >1.0.

Benefits – NED Drivers

- Inland Navigation Transportation
 - Capacity (LPMS)
 - Forecasts (WCSC, Industry reports, etc.)
 - Transportation Rate Savings (Surveys, STB Waybill, Informa Vessel Operating Costs)
 - Engineering Reliability Industry Impacts
- Repair & Replacement Costs Avoided
 - Engineering Reliability (OCA/ORA, RMC, OPs, ED)

Questions?

Extra Slides follow...

9

BUILDING STRONG®

Cost-Benefit Analysis

- Conceptually the IMTS accommodates Q traffic at cost P. Benefit is represented by red triangle as consumer surplus for Q that is willing to pay more for water transportation but doesn't in the current market
- A navigation improvement/investment increases waterway transportation supply to Q' and reduces cost to P'. Existing Q traffic moves at lower cost and additional traffic (Q→Q') is induced or shifts to the waterway
- BCR is calculated by dividing total economic benefits by total economic costs

Inland Navigation Economics BCR Updates

	Last Approved Report		Last Economic Update			
					BCR - App	15
Project Name	Year	Report type	Level	Year	Rate	BCR - 7%
Olmsted	2012	PACR	4 - PACR	2012	2.8	3.3
Kentucky Lock Addition	1994	LRR	3- LRR	2011	1.7	1.7
Chickamauga Lock	2001	Feasibility	3-LRR	2015	n.a.	0.5-0.8
Lower Monongahela 2, 3 & 4	1992	Feasibility	1.5 - Update	2014	1.3	1.4

