USACE Inland Navigation Economics 101

Inland Waterways Users Board No. 80

Tinley Park, IL

Mark R Hammond

Economist

Great Lakes and Ohio River Division (LRD)

05 Oct 2016

US Army Corps of Engineers
BUILDING STRONG®

Economics Framework Basics

- Supply and Demand Modeling
- 2. Cost-Benefit Analysis Outputs

Purpose - provide a basic understanding of **why and how** the USACE conducts economic analysis to support water resource investment decisions

- "why" provides historical significance and context
- "how" explains what we do
- objective is a better understanding of cost-benefit analysis

WHY? - Corps Economic Guidance

- Flood Control Act of 1936 (why)
- 1950 Green Book (how)
- 1970s Office of Chief of Engineers System of Locks and Dams requires System Analysis
- 1973 Principles and Standards
- 1983 Principles and Guidelines
- 2000 Planning Guidance Notebook

HOW? - Supply Demand Framework

Supply Demand Framework

- Demand Lock Traffic, Rates and Shipper Response
 - Example new fracking plant opens shifting demand curve to right
 consequence higher transportation costs due to higher delays

Supply Demand Framework

- Supply Lock Capacity and Reliability
 - Example closure of lock shifts supply curve to left consequence – higher transportation costs due to delays

Cost-Benefit Framework - What are Benefits?

- Tonnage times Savings per Ton
- When demand curve shifts right or supply curve shifts left, then the cost per ton of barge transportation increases which reduces the savings per ton

What are Savings per Ton?

Cost of shipping by waterway minus least cost alternate (overland)

Cost Benefit Framework - What are Costs?

- Defined in CWPM 25 Aug 2011
- Costs are the money to operate, maintain, and improve the navigation system over the planning horizon (life-cycle)
 - Financial fully funded escalated to include inflation
 - Economic constant dollar used in cost-benefit analysis
- Project First Cost includes PED costs; construction costs, LERRD values; and contingencies
- Total Investment Cost is the Project First Cost + Interest During Construction (idc)
- Average Annual Cost is the Total Investment Cost times
 Amortization Factor + Annual O&M + annualized and discounted
 Repair/Replacement costs

What is Cost-Benefit Analysis?

- Cost-Benefit analysis is a conceptual framework used to compare with- and withoutproject conditions
- Contains all pertinent costs and effects (beneficial and detrimental); incremental justification, optimization

		WPC				
Average Annual ('000\$)	WOPC		Alt A	Alt B		
Costs (AAEC)	\$ 12,750	\$	24,500	\$	38,500	
Benefits (AAEB)	\$ 157,500	\$	179,500	\$	199,750	
Incremental Costs		\$	11,750	\$	25,750	
Incremental Benefits		\$	22,000	\$	42,250	
Incremental Net Benefits		\$	10,250	\$	16,500	
BCR			1.87		1.64	

Used to identify the NED plan - maximize net benefits

Alternative B is NED plan

What is the Without-Project condition?

- Several possibilities and sometimes changes:
 - The current and future situation if the system is maintained with normal O&M and failures are fixed as they occur – during failure the supply curve shifts left
 - Replace unreliable component before failure (Adv Maint)

What is the With-Project condition?

- Several possibilities
 - Major Rehab Make investment before failure to improve reliability with no enlargement of locks – no shift right in supply curve
 - New Lock Make investment before failure to improve reliability with enlargement of locks – a shift to the right in supply curve

1. Identify Study Area

2. Problems and Opportunities

Navigation Opportunities

- Improve structural integrity
- Enhance reliability
- Increase auxiliary capacity

Measures

- New replacement facilities (3 for 3)
- Fewer facilities (2 for 3)
- One new lock chamber per facility
- Two new lock chambers per facility
- Advanced maintenance
- Major Rehabilitation
- Low-cost features to improve efficiency

3. Forecast Future Conditions

Upper Ohio Traffic

4. Plan Formulation

Without-Project Condition (Baseline; NEPA – No Action Alternative)

Status quo: Three structurally deficient lock facilities

- Maintenance (routine, cyclic, and reactive)
 - ✓ No major component replacement
 - ✓ No major rehabilitation
- High & increasing probability of structure failure
 - √ Progressive deterioration
 - √ Significant consequences
 - Multi-year closures
 - o Potential pool loss

4. Plan Formulation

With-Project Condition - Navigation Measures

Measures eliminated

- x Replace locks & dams (all new 3 for 3)
- × Remove one lock & dam (2 for 3)
- x Add new third locks (retain existing)
- × Major Rehabilitation

Measures carried forward for analysis

- ✓ Advanced maintenance (some component replacement)
- ✓ New lock construction (at existing locations)

5. Evaluation of Alternatives

Cost-Benefit Analysis

(FY'09 Price Level; 4.125% Discount Rate)

			WPC									
Avg Annual ('000,000\$)	WOPC (FAF)		Adv. Maint.		*Dual 600'		Single 600'		Single 800'		*Single 1200'	
Costs (AAEC)	\$	39	\$	78	\$	110	\$	104	\$	116	\$	132
Benefits (AAEB)	\$	250	\$	364	\$	434	\$	433	\$	428	\$	417
Incremental Costs			\$	38	\$	70	\$	65	\$	77	\$	92
Incremental Benefits			\$	115	\$	184	\$	184	\$	179	\$	168
Incremental Net Benefits			\$	77	\$	114	\$	119	\$	102	\$	75
BCR				3.01		2.62		2.83		2.34		1.81

*Navigation stakeholder preferences: Dual 600'; Single 1200'

6. Recommend a Plan - NED

Construct 3 new lock chambers (110'x600')

Remove existing auxiliary river chambers

Retain existing land chambers (110'x600')

Reactive maintenance

Cost: \$2.32 Billion

National Economic Development Plan

Maximizes national economic net benefits

Sustains navigation capability and capacity

Minimizes risk of river closure

Meets the Planning Objectives

- · Safe, reliable, efficient & sustainable navigation
- Protection of the environment

Questions

